
Physics Object Review

Craig Blocker
Jim Kowalkowski

Marc Paterno
Brian Winer

July 26, 2000

Abstract

We have reviewed the offline high level objects (CdfJet , CdfEmObject ,
CdfTrack , and CdfMuon) and their collection classes. This note gives our
recommendations in several areas.

1 Introduction

In order for physicists to effectively analyze Run II data, it is important that
the “physics objects” (CdfJet , CdfEmObject , CdfTrack , and CdfMuon) and
their collection classes be well designed. It is essential that the user with an
understanding of the detector, the physics she or he wishes to do, and the
basics of C++ be able to quickly and easily access the needed reconstructed
information. We have reviewed these objects with this and other criteria in
mind (such as maintainability of the code and offline performance). This note
contains our recommendations.

We were disappointed that we did not receive the information, summarizing
the methods of each of the physics objects, which we requested from each of
the groups. This information might have helped us produce a more complete
review.

2 Physics Objects

The EET group has defined a set of what are known as High Level Objects.
They differ from the objects we reviewed in that they contain many kinds of
information from different sources, that is, they contain just about everything
that the physicist would like to know about the event. We feel that there is
a need for the level of object we reviewed (CdfJet , CdfEmObject , CdfTrack ,
and CdfMuon — we shall call them “physics objects” to distinguish them) in
addition to the EET group’s High Level Objects.

1

http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh

The physics objects contain direct information on the reconstructed physical
objects in the event. The High Level Object contain a great deal of related
information (such as trigger information, different fits, etc). This potentially
leads to much physical coupling1 and large stored objects. We briefly looked
through the HighLevelObjects package. It appears to violate most of the rules
established by the Offline software group. Development of these packages should
be stopped, and the effort channeled towards the physics objects.

We do not consider it part of this review to cover these High Level Objects
and, instead, focus on the physics objects.

It is difficult to review the design of a set of classes if the purpose for those
classes is not clearly defined. It seems that not everyone agreed on the purpose
of these physics objects. For the purpose of this review, we have accepted the
following defined purpose:

A “physics object” is an EDM object that is useful for perform-
ing analysis, even in the circumstance when other related EDM ob-
jects have been deleted. These objects are suitable for inclusion in
secondary or tertiary data sets, and are complete enough for most
analysis purposes. They may contain links to other EDM objects,
but must retain significant usefulness even if the linked-to objects
have been dropped from the EventRecord .

According to this definition, CdfTrack is a proper physics object, while Cdf-
Jet is a class of a different sort. CdfJet is designed to be compact in the case
when the output of many jet algorithms are stored in one EventRecord . This
is probably suitable for secondary data sets, but is less so for tertiary data
sets. We recommend the introduction of another class (we leave the
naming to the jet group) with the same interface, but which caches
the results necessary for implementing most of that interface.

3 Uniformity and Ease of Access

It is vital the physicist user of these objects be able to simply, clearly, and
efficiently access the information needed to do analysis. This implies both that
the access methods to these objects be straight-forward and that the interfaces
be as uniform as possible across the various physics object classes.

It is clear that the four groups have already cooperated well on establishing
a uniform interface. However, there are some differences that remain that need
to be addressed.

3.1 Finding Objects in the EventRecord

In order to simplify access to the stored collection objects, each collection class
has a static find method. One problem is that there are differences in the var-

1For a description of physical coupling, and the reasons for our concern about minimizing
it, see http://cdspecialproj.fnal.gov/examples/PhysicalCoupling.html.

2

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://cdspecialproj.fnal.gov/examples/PhysicalCoupling.html

ious find methods. A second is that these many functions introduce a main-
tenance burden; improvements in the EDM will only be realized if all of these
functions are modified.

CdfTrack , while it is a storable object, has no find method to assist the user;
if one wishes to look up an individual track, one must make use of the Event-
Record ’s iterator classes. No find method was supplied for CdfTrack because
users are intended to look for CdfTrackColl , rather than directly for individual
CdfTracks. We agree with this decision.

Class CdfTrackColl has methods:

static CdfTrackColl::Error find(CdfTrackColl_ch&);
static CdfTrackColl::Error find(CdfTrackColl_ch&,

const StorableObject::Selector&);

Class CdfEmObjectColl has methods:

static CdfEmObjectColl::Error
find(CdfEmObjectColl::const_handle&);

static CdfEmObjectColl::Error
find(CdfEmObjectColl::const_handle&, const std::string&);

Class CdfJetColl has methods:

static CdfJetColl::Error find(EventRecord*, CdfJetColl_ch& ,
const std::string&);

static CdfJetColl::Error find(CdfJetColl_ch&,
const std::string&);

static CdfJetColl::Error find(EventRecord*, CdfJetColl_ch& , Id);
static CdfJetColl::Error find(CdfJetColl_ch&);

Class CdfMet has methods:

static CdfMet::Error find(CdfMet_ch&);
static CdfMet::Error find(CdfMet_ch&,

const std::string&);

Class CdfMuonColl has methods:

static CdfMuonColl::Error find(CdfMuonColl::const_handle&);
static CdfMuonColl::Error find(CdfMuonColl::const_handle&,

const std::string&);

Each of these classes uses a return type of Error, which is a typedef within
each class. However, the meanings of these typedefs differ. In some cases (Cdf-
EmObjectColl and CdfMuonColl), the typedef is to Bool t, which is itself a
typedef provided by ROOT. As a general note, we strongly recommend
removing this dependence on ROOT. ROOT’s Bool t should everywhere
in the CDF code be replaced by the standard built-in C++ type bool. In other
cases, (CdfJetColl and CdfTrackColl), the typedef is an enum values with OK

3

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/ElectronObjects/ElectronObjects/CdfEmObjectColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJetColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MetObjects/MetObjects/CdfMet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuonColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/ElectronObjects/ElectronObjects/CdfEmObjectColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/ElectronObjects/ElectronObjects/CdfEmObjectColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuonColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJetColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh

and ERROR (and they even differ on the order of the two values, although
this probably wouldn’t be noticed by the user). The return types should be
uniform.

Also, the find methods differ in what additional information is needed,
what form it takes, and whether a pointer to the event record is needed. More
uniformity is essential here.

A possible solution to insuring uniformity of access methods to stored objects
would be to make the find method part of the EDM. We propose the addition
of several template member functions to the EventRecord class. The signatures
could be something like the following suggestions.2 The list of functions in our
example is drawn from what we found in the existing code. The package authors
should reach an agreement on which functions should be standard (including,
perhaps, ones we did not think of).

Note that the template parameter SEQUENCE, as used in this example,
is a back-insertion sequence. It can be any collection which understands the
function push back. In the Standard Library, the classes vector, list, and deque
are all back-insertion sequences.

// Fill the given sequence with handles for all the
// StorableObjects of type SEQUENCE::value_type::value_type
// in this EventRecord. Return the number of handles in the
// collection.
template <typename SEQUENCE>
size_t
findAll(SEQUENCE& results) const;

// Fill the given sequence with handles for all the
// StorableObjects of type SEQUENCE::value_type::value_type
// in this EventRecord that satisfy the given predicate. Return
// the number of handles in the collection.
template <typename SEQUENCE, typename PREDICATE>
size_t
findAll(SEQUENCE& results, const PREDICATE& pred) const;

2We have expressed these as template member functions of the class EventRecord ; they
could also be expressed as free function templates, making use of the existing EventRecord
interface. Since both of these solutions would be an extension of the interface of EventRecord ,
not a change in an existing part of the interface, neither should break existing code. Marc
and Jim will work with Robert Kennedy (the primary author of the EDM) to determine the
exact signature and implementation. These functions would require minor additions to the
handle classes, as described in §9.7.3.

4

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh

// Get a single instance of the type of object specified by the
// given handle. Return true, and set the handle to contain the
// found object, if only one matching object is found. Return
// true, and set the handle to NULL, if no matching object is
// found. Return false, and set the handle to NULL, if more than
// one matching object is found.
// Note that use of findAll() is preferred.
template <typename HANDLE>
bool
findOne(HANDLE& h) const;

// Get a single instance of the type of object specified by the
// given handle, and matching the given predicate. Return true,
// and set the handle to contain the found object, if only one
// matching object is found. Return true, and set the handle to
// NULL, if no matching object is found. Return false, and set
// the handle to NULL, if more than one matching object is found.
// Note that use of findAll() is preferred.
template <typename HANDLE, typename PREDICATE>
bool
findOne(HANDLE& h, const PREDICATE& pred) const;

// Get a single instance of the type of object specified by the
// given handle, and identified by the given string. Return true,
// and set the hande to contain the found object, if only one
// matching object is found. Return true, and set the handle to
// NULL, if no matching object is found. Return false, and set
// the handle to NULL, if more than one matching object is found.
// Note that the findOne() that takes a predicate can fulfill
// this need as well.
template <typename HANDLE>
bool
findOne(HANDLE& h, const std::string& description) const;

3.2 Objects within Collections

The largest problem here has to do with the types of objects that are stored in
the collections. CdfTrack and CdfMuon are storable objects and their collections
contain links to them. CdfJet and CdfEmObject are streamable objects and the
collections contain the actual objects. We believe that using streamable objects
makes the code simpler and easier to maintain. In addition, collections own
the streamable objects they contain, but once a collection of storable objects is
stored in the event, the ownership of the collected storable objects is given to
the event. This more complicated pattern of ownership is confusing for many
users, and even some of the experts agreed it is easy to cause memory errors
within the event.

5

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh

Thus, we recommend that the physics objects be streamable. Cdf-
Jet and CdfEmObject are already streamable. Since CdfMuon is essentially
unwritten at this point, it should be straight-forward to make it streamable.
For CdfTrack , we recommend that the tracking group look closely at
the manpower, time, and consequences of converting to streamable
objects. If there is functionality of storable objects that are needed for Cdf-
Track objects, such as ID assignment, then we suggest that thought be given to
also providing this functionality in streamable objects.

To consider what would be necessary if CdfTrack were converted to a stream-
able object, we discussed a few scenarios that would require additional EDM
tools. These scenarios are also relevant whether CdfTrack remains a storable
object, or if it is converted to a streamable object.

One scenario is the analysis of an event that has a track collection with
100 tracks and two electrons. On output we want to store the two electrons and
their associated tracks, but not the remaining tracks. With the current classes,
it is not clear how this is to be done. We consider it important for it to be easy
for a user to do this.

In the current storable version of CdfTrack , dropping the track collection
can be done without disturbing the individual tracks (we hope this is true), and
the two we want will need to be marked to be saved while the rest are dropped.
In the streamable case, we would need to copy the two tracks into a new track
collection and add it to the event, then we would need to copy the electron
collection, point the track links to the new track collection, and put it into the
event. In either case, the process must be simple to use.

3.3 View Classes

CdfTrack and CdfMuon have associated collection objects known as Views (for
example, CdfTrackView). These collections are derived from StorableObject
and contain links to the physics objects. These behave basically as if they
were collections of pointers to const objects — the objects may be queried,
but not modified, through these pointers.3 This has the advantage that the
links in the View can be manipulated, that is, sorted, selected to not include all
the objects, subtracted from and added to. The CdfJet documentation has an
example of doing this by copying the stored CdfJetColl to a new collection. We
recommend this example be replaced by an example using Views. We
recommend that all collections of physics objects be able to provide
View objects.

We recommend that analysis code and algorithm objects should
prefer the use of Views to direct use of the collections.

3Formally, only member functions that have been declared const may be called on these
objects. See also §8.

6

http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackView.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/StorableObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJetColl.hh

3.4 Standard typedefs and methods

Having methods on the collections that perform the function of reserve in
vector is very important. While the contents method allows the user to call
reserve directly on the contained collection, having reserve in the interface
of the collection classes themselves may make it more obvious that reserve
should be used. Giving count estimates to vectors, for example, can dramatically
increase its speed of filling (push back) under many situations. See §9.4.1 for
more on this subject.

Creating a policy for standard typedefs in collections and objects is im-
portant. Choosing ones, whenever possible, that are similar to ones from the
Standard Library is beneficial (value type, iterator, const iterator, etc). Any
of the collection objects that have typedefs that will never be used (iterator,
const iterator, etc.) should be cleaned up and have these typedefs removed.

Using common methods names, such as size, begin, and end, are similarly
important. As with the typedefs, it is critical to have them be common across
the CDF classes, and important to have them be the same as the names in the
Standard Library.

3.5 Association Between Objects

A forward-pointer is a pointer that points from an object created earlier in
time to one created later in time. Setting such a pointer in an object that has
already been added to the EventRecord requires casting away the constness of
the earlier object, and may cause a violation of the integrity of the event model.
We strongly recommend that any setting of forward pointers should
be forbidden, and the existing occurrences should be removed from
the code.

Instead of inventing a way to deal with forward-pointers, such as a
pointer in a CdfTrack to a CdfMuon, we recommend using association
objects. That is, a simple collection that holds (Link<CdfTrack>, Link<Cdf-
Muon>) pairs could be used to represent the associations. In addition to the
benefit of not creating the opportunity for corrupting the integrity of the Event-
Record , the use of an association class also allow the opportunity to associate
multiple items together (a triplet rather than a pair), and also allows more than
one instance of an associate (for example, different reconstruction algorithms
may want to associate different instances of CdfMuon with the same CdfTrack).

Pointers from later objects to earlier objects (generally used to associate
with the later object those objects used in its creation) cause no trouble and do
not need the association class; for example, it is fine for CdfMuon to contain a
Link<CdfTrack> which denotes the CdfTrack used in creating the muon.

7

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh

4 Documentation

4.1 Documentation for Physics Objects

Documentation is extremely important because of the complexity of the physics
objects and the EDM rules. It must be clear so that the user who understands
the physics they wish to do and the basics of C++ can access and use the objects
containing the information they need.

It is also important that the user know where to find the relevant, up-to-date
documentation. We strongly recommend that each offline package be
required to have a /doc directory. The advantage of this is that as the
code evolves, the documentation can be kept current and the correspondence
between the version of the code and the version of the documentation can be
maintained.

This documentation should be viewable by the CDF code browser (that is,
text, HTML, PDF, or PostScript files). Of course, this documentation can refer
to documentation in other locations (CDF notes, other web pages, etc.), but
the need to maintain accurate documentation across offline versions should be
kept in mind.

We strongly recommend that CDF establish (SRT) rules for build-
ing the documentation, and for installing the documentation into the
release’s /doc directory. Having an installed release /doc directory has the
advantage of allowing access to the documentation in a well-defined place, with-
out requiring going through the code browser. This may require enhancement
of SRT by Jim Amundson.

We recommend that each package contain an example directory.
This directory must be populated with a current, working AC++ module that
illustrates how to use the classes in a meaningful way.

We recommend that the documentation for each of the physics
objects include a UML class diagram, showing the relationships be-
tween the classes that are important to each physics object. This would
include the inheritance hierarchy for each class, and each class to which links
are held.

The tracking group is to be applauded for having significant documentation,
consisting of a long (42 pages) CDF note on CdfTrack and its related classes.
This note contains much detail, which is perhaps overwhelming to the user.
We recommend (as the tracking group suggested) a shorter summary
that covers the important points for the user.

The calorimetry group is also to be applauded for its documentation on both
calorimetry and on jets. This documentation is in the form of a web page in
a somewhat obscure location to the user. This needs to be remedied by either
moving the html to the /doc area or by putting an appropriate link there. Also,
detailed documentation on the accessor methods needs to be added.

An upcoming CDF note on EM objects was promised.
There was no documentation on CdfMuon. This obviously must be remedied.

8

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh

In summary, we recommend for each physics object, the following
documentation:

• a /doc directory in the package;

• an up-to-date user’s guide in the /doc directory;

• a UML diagram illustrating the relations between the important classes;

• an example directory, containing examples of how to use the important
classes.

4.2 Documentation for the EDM

We recommend the production of a general document that explains
the major concepts and classes of the EDM. Such a document should
describe the purpose of each of the following classes and class categories. tasks:

• collections;

• views;

• handles (of all varieties); especially, distinguish between the different types
of handles, and when the user should use each.

This document should also simply explain (with examples) how to do the
following tasks:

• How does one select a subsample of objects to make a new collection?

• How does one include or exclude a collection from and output file?

This document should not contain information specific to any one kind of
physics object; it would contain the information common to all the different
physics objects.

5 Comments on Each Object

In these section, we address a range of issues for each of the physics object
classes, and their related classes. We should stress that the coding recom-
mendations made in one section often also apply to the other objects. We’ve
generally placed the comments in the section which we thought needed them
most.

5.1 Tracks

As a general comment, we find many ifdefs for USE CDFEDM2 in the tracking
code. This makes the code difficult to read, and thus greatly increases the
maintenance burden imposed on the code authors. We suspect these are no
longer necessary; if so, they should be removed.

9

5.1.1 CdfTrackColl

The comments in the header for the class CdfTrackColl declare the copy con-
structor private, and state that it is not implemented, but the source file for the
class does implement it. The implementation prints an error message to cerr,
and then calls assert(0), causing the program to crash.

If it is necessary to prevent the copying of CdfTrackColl , then the better
solution is to declare the copy constructor private, and to leave it unimplemented
— thus making code the tries to copy a CdfTrackColl produce a compile-time
error, rather then letting it build an executable that reveals the error only
through occasional crashes.

But the more important question is: why should it be illegal to copy one of
these collections? It seems to us that this would be a natural thing to want to
do, and we do not see any danger involved.

There are methods such as setHitSets and setMCHMatches that use COT
singletons and cast away the const-ness of the hit collections. Do COT hits
come from a singleton? If so, this must be changed so that they are stored using
the EDM, and are accessed in the normal fashion.

Why are destroy, deallocate, activate, and deactivate present in this class?
The comments of §9.7.2 apply for this class, and for others in the TrackingOb-
jects package.

The assignId uses const cast to remove the const-ness of IdManager ob-
ject in the event. This should not be necessary. It is not clear whether the error
is in the EDM (i.e. the IdManager or EventRecord needs to be changed), or if
the error is in the style of use in CdfTrackColl .

The code authors commented that the Standard Library typedefs defined
in this class are not used elsewhere. If this is true, they should be removed4.

5.1.2 CdfTrack

Inlining simple methods like CdfTrack:: setFitStatus when possible is good
to do.

Each setChild does a const cast; see comments in §8 concerning the exces-
sive use of const cast. The member datum child is also an example of
a forward pointer; we strongly recommend against their use; see §3.5
for our explanation why, and our proposed solution. Specifically, in this
case, we understand (from conversations with Ken Bloom) that the restriction
to zero or one children could be a problem; two different could be run, generating
two children. While this problem hasn’t yet been encountered, it is likely to in
the future. The argument was made that, in setting this data member, “we are
not changing anything fundamental about the track.” But clearly some other
code may have made a decision based upon the information about this data
member in this track; if the data member is then altered, that other piece of
code is not reproducible. This example illustrates why we strongly recommend
prohibiting such forward pointers.

4See also the comments in §9.7.3.

10

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh

We find many unprotected accesses to elements of arrays, such as in the
functions setResidual and covAx. This sort of code is a primary source of
memory corruption. It would be better to make use of appropriate classes for
each circumstance.

Large functions, such as beginSIHits, should not be inlined; see also §5.1.8.
In innerCTHitR, these is a constant -999. What is the significance of this

value and its origin? In general, “magic numbers” like this should be avoided,
and replaced with meaningful error conditions. Their existence is frequently a
sign of inadequate planning.

5.1.3 CT HitSet

It appears that this class is both a storable object and a singleton. This does not
appear to be a sensible combination; singletons are designed for global access,
and have a policy for lifetime management that generally calls for destruction
during static destruction time, while StorableObjects are accessed through the
EventRecord interface, and have their lifetime controlled by the EventRecord .
This cannot possibly work properly. It is not reasonable to expect a user to
figure out how to use this class. We strongly recommend removal of the
singleton nature of this class.

The copy and assignment operators for this class are forbidden. We do not
understand why this is necessary. If it is not necessary, they should be provided.

5.1.4 CdfTrackView

We recommend that the static methods allTracks and defTracks be
eliminated in favor of the standard access methods proposed in §3.1.

Beware that static strings class members should not be used until after main
is entered.

Is the use of AbsEnv::instanace()->theEvent() really necessary?

5.1.5 Pairs of Tracks

Marc and Jim each have slightly different ways to manage iterating through pairs
of tracks in a clean, simple way. We will try to make these publicly available
very soon.

5.1.6 Use of bi-directional links

We strongly discourage the use of bi-directional links, and recommend instead
the use of association objects, as described in §3.5.

5.1.7 Excessive use of const cast

The code in the package TrackingObjects contains an excessive number of uses
of const cast.

11

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/StorableObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh

5.1.8 Inappropriate Inlining

We observe frequent inlining of methods that are long and that have looping
constructs. This is not likely to improve performance and it is more than likely
to cause code bloat, which can lead to poor performance — at compile time,
link time and run time.

5.1.9 A Plethora of Collections

It is unclear when one is supposed to use a CdfTrackCollection instead of a
CdfTrackColl and when a CdfTrackSetView is important as opposed to a Cdf-
TrackView — and when to use a CdfTrackSet . Do all these classes serve distinct
purposes? Any unnecessary ones should be removed. A short document that
compare the different purposes of the remaining classes should be provided to
guide the user to the correct choice for his purpose.

5.1.10 Enumerations

Enumerations in the global namespace such as those in FitStatus.hh should be
avoided unless prefixed with the package identifier, or confined to a class or
namespace scope. It is very easy to clash on names such as “stale” and “ok”,
both of which appear in FitStatus.hh.

5.2 Jets

5.2.1 Linkage to CalData

One item that generated much discussion is whether CdfJet should always re-
quire CalData to be present, or if it should instead be “self-contained”. In the
PAD, we recommend the use of CdfJet as it currently is — com-
pact, but requiring the existence of CalData. In more-derived datasets,
one should be able to drop the CalData object and still have useful jet. There
might be a simple way to achieve this by adding an interface (abstract) class
(we call it BasicJet), and another jet class that is self-contained (we call it
SelfContainedJet). We happily leave the choice of the real class names to the
authors of the classes. We sketch our proposal below.

class BasicJet
{
virtual HepLorentzVector fourMomentum() const = 0;
... etc, for the rest of the required interface

};

class CdfJet : public BasicJet
{
... as it is today ...

};

12

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrackCollection.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackColl.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrackSetView.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackView.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Storable/CdfTrackView.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrackSetView.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh

class SelfContainedJet : public BasicJet
{
... important quantities contained directly ...
};

We would then have two jet collection types — one to store SelfContained-
Jets, and one to store CdfJets.

class CdfJetColl : public StorableObject
{
... as it is today, plus additions ...
typedef ViewVector<CdfJet> CdfJetView;
typedef ViewVector<BasicJet> BasicJetView;
size_t fillView(ViewVector<CdfJet>& fill_me) const;
size_t fillView(ViewVector<BasicJet>& fill_me) const;

};

class CdfSelfContainedJetColl : public StorableObject
{
... everything necessary ...
typedef ViewVector<SelfContainedJet> SelfContainedJetView;
typedef ViewVector<BasicJet> BasicJetView;
size_t fillView(ViewVector<SelfContainedJet>& fill_me) const;
size_t fillView(ViewVector<BasicJet>& fill me) const;

};

5.2.2 Standard typedefs

If the following typedefs in CdfJetColl are not used, they should be deleted.
(We heard some comments that they were not used):

• typedef CdfJet value type

• typedef std::vector<CdfJet>::iterator iterator

• typedef std::vector<CdfJet>::const iterator const iterator;

• typedef CdfJet& reference;

• typedef const CdfJet& const reference;

• typedef CdfJet* pointer;

• typedef const CdfJet* const pointer;

• typedef std::vector<CdfJet>::difference type difference type;

• typedef std::vector<CdfJet>::size type size type;

We recommend the typedef CollType be changed. The current version
reads:

13

http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJetColl.hh

typedef std::vector<value_type> CollType;
typedef CollType collection_type;

The use of vector here assumes knowledge of the type used in the ValueVec-
tor class. This sort of code is fragile. We recommend instead the use of a
standard typedef in the collection class, as we propose in §9.7.3.

5.3 EMObjects

5.3.1 Complex Calculations

The file CdfEmObject.cc is about 1400 lines long, and EmCluster.cc is about
1800 lines long. We are concerned that these classes are doing too much. We
note the following items contained in these classes:

• A Gaussian integration algorithm implementation in CdfEmObject.cc.

• The large EmCluster::checkDistance algorithm implementation.

• The large EmCluster::build.

• The large CdfEmObject::maxPtTrackLocalCoord function.

• The large CdfEmObject::bestMatchingCesCluster function.

• The large CdfEmObject::bestMatchingPes2dCluster function.

• The large CdfEmObject::lshr function.

All of these seem more like algorithms or utilities than code that should live
outside the “data objects” EmCluster and CdfEmObject .

Since these algorithms will almost certainly evolve, leaving them inside the
classes will make it necessary for the code version to be carefully matched with
the data read, so that old data uses the old algorithm versions, and new data uses
the new algorithm versions. The complexity of dealing with this is reduced (but
not eliminated) by having the algorithms brought out into their own classes5.

We did not have time to look into this, but we wonder if the use of postread
in CdfEmObject.cc causes all the linked objects to be brought in and converted
to C++ objects? In CdfEmObject.hh we see:

ValueVectorLink<EmClusterColl> _ilEmCluster; //Indexed link
EmCluster Link<CdfTrackView> _matchingTracks; //Link to tracks
IndexViewVector<CesClusterColl> _matchingCesClusters;
IndexViewVector<Pes2dClusterColl> _matchingPes2dClusters;

In CdfEmObject.cc we see:

bool cesread = _matchingCesClusters.postread(p);
bool pes2dread = _matchingPes2dClusters.postread(p);
bool trackread = _matchingTracks.postread(p);

5See also §9.2.

14

http://purdue-cdf.fnal.gov/CdfCode/source/StorableContainers/StorableContainers/ValueVector.hh
http://purdue-cdf.fnal.gov/CdfCode/source/StorableContainers/StorableContainers/ValueVector.hh
http://purdue-cdf.fnal.gov/CdfCode/source/ElectronObjects/ElectronObjects/EmCluster.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh

5.3.2 Other Comments

We recommend that the EM objects follow a similar pattern as that
outlined in the §5.2 regarding the use of Views. We stress encouraging
the use of Views by adding fillView methods and providing (or correcting)
typedefs. Please see also the comments in §9.2.

5.4 Muons

The muon code is well behind the other objects. The CdfMuon interface has
not been clearly defined, and little code is written. The new group needs to
quickly produce a viable CdfMuon class; this should be made somewhat easier
by borrowing the most effective techniques from the other physics objects.

We recommend that, like CdfJet and CdfEmObject , CdfMuon
should be a streamable object. It should contain a link to the associated
track (or a collection of links to tracks, if it is possible to be associated with
more than one). We strongly recommend that CdfMuon not contain
a host of methods that return components of contained quantities.
Instead, such components should be grouped into meaningful classes, and the
CdfMuon should then have functions which return const references to these
contained items.

The same recommendation we make for the other physics objects should also
be applied to CdfMuon.

6 Links

6.1 Data Caching vs. Use of Links

One issue for all four types of objects is the question of which information
should be cached in the object (that is, exist as a private data member) and
which information should be calculable from links to other objects6. The issues
here are efficiency of access, size of the stored object, and being able to drop
sizeable lower levels objects in forming mini data sets from PAD’s.

CdfTrack objects cache most of the track information. This is appropriate
in this case since the lower level objects are primarily hits and recalculating the
track parameters from hits and keeping the hits around for this would be highly
inefficient.

CdfEmObject objects are primarily links to EmCluster and CdfTrack ob-
jects. Most of the information needed by the users is cached in these lower
levels objects. Given the relative small number of EM objects per event, this
scheme is reasonable.

The CdfJet objects also are primarily links, in this case to CalData. In order
to calculate anything about jets, it is necessary to have CalDataavailable, which
takes about 3.7 kbytes per event. However, given the relatively large number of

6See §9.2 for a discussion of caching vs. on-the-fly calculation.

15

http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/eleMods/CdfEmObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/ElectronObjects/ElectronObjects/EmCluster.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh

jets per events (around 6 for jet50 data to around 18 for top data, due to the low
1 GeV threshold) and the presence of several different jet clustering algorithms,
the amount of space needed store the 8–12 quantities needed to make CdfJet
objects useful without CalData is roughly 2.7 kbytes per event. This is not
significantly less than CalData itself. Thus, the present scheme for CdfJets is
reasonable.

However, it is possible that some people doing jet physics may want to be
able to make intermediate data sets (that is, not ntuples) that contain a subset
of jets (either a higher threshold or only some of the clustering algorithms). We
encourage the QCD group to consider this and perhaps implement a version of
CdfJet where the useful quantities are cached, and hence the jet objects can
stand independently of CalData.

There does not presently exist an implementation of CdfMuon. The pro-
posed class had the option to include several track candidates for each set of
muon stubs. To the review committee, this seems like an unnecessary compli-
cation with little benefit. We believe that keeping the best track for each set
of stubs is sufficient. However, if the Muon group feels that it is necessary (we
don’t believe it was done in Run 1), then keeping the second best track could
also be done, although the user should have simple access to the quantities as-
sociated with the best track. Given the small number of muon candidates per
event, we believe the best approach to muon is to cache most of the information
(differences in x and z, χ-squares, calorimeter tower energies, and one or two
isolation variables). In addition, there should be links to the track (or a vector
of links, if more than one is needed) and to the muon stubs. There must be
a four-momentum (not separate px, py, pz, and E) method that returns the
four-momentum of the associated track; this momentum should be cached in
the CdfMuon.

6.2 Problems with Existing Use of Links

The EDM links have the problem that the const is dropped on the object that
is being linked to. Robert Kennedy has proposed (during preparation of this
document, has already begun to implement) a solution that removes the danger
of allowing non-const access to objects in the EventRecord . This is a critical
item, and Robert should be afforded whatever assistance (if any) he needs to
see this problem solved.

We are also concerned with the degree of physical coupling7 induced by use of
the existing link classes. Robert has also begun work on decreasing this coupling.
We recommend that final goal should be a link class (or classes) that
allows an instance of class X inside an instance of collection class XC
to refer to an instance of class Y inside a collection of type YC, and
which meets the following requirements:

7See footnote 1 for a reference on physical coupling; see also §9.3 for more physical coupling
issues.

16

http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh
http://purdue-cdf.fnal.gov/CdfCode/source/CalorObjects/CalorObjects/CalData.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/MuonObjects/MuonObjects/CdfMuon.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh

• Class YC has compile-time or link-time coupling to neither class X nor
class XC.

• Class Y has compile-time or link-time coupling to neither class X nor
class XC.

• Coupling in name only is permitted.

7 Corrections

It is clear that several of these objects will require corrections to some quantities
to make them optimally useful to do physics (for example, jet energy corrections,
electron and photon energy corrections, beam constrained fits for tracks, and
dE/dx corrections). None of the groups has considered these in detail yet.

We discussed two different options for the handling of corrections to recon-
structed objects, each applicable to a different circumstance. Both recognize
that the correction code will be changed more often than the code defining the
classes for the reconstructed objects, and so it should be possible to change the
corrections without modifying the reconstructed object’s class.

The first option is to encapsulate the correction algorithm in a “correction
object”. One then gets at the corrected quantities by giving the original version
of the reconstructed object to the correction object, and querying the correction
object. This is most appropriate for those cases in which the correction depends
only on constants within the correction object and the features of the object
being corrected — and not on other features of the event.

The second option, which is appropriate when the corrections are substantial
or require much additional information, is to treat the correction processes as
another step in reconstruction. In this case, the correction algorithm should
be encapsulated in a framework module; the input to this module is the pre-
correction reconstructed object, and the output is a new reconstructed object,
with appropriate bookkeeping information to indicate the parentage of the new
object.

We recommend that these corrections be done by methods or func-
tions that take as input the stored object (CdfJet , etc.) and returns
the corrected quantity. The correction methods may have additional input
concerning how the correction is to be done, but if this not supplied, should
default to the group’s best estimate of how to do the correction for the average
user.

There should be uniformity between the various correction methods for the
various objects. Since the corrected quantities vary, there will be differences
in method names. However, the naming scheme should be similar for each, as
should the order and meanings of arguments.

17

http://purdue-cdf.fnal.gov/CdfCode/source/JetObjects/JetObjects/CdfJet.hh

8 const Correctness

We are very concerned with the const-correctness of the code we reviewed. We
remind all the code authors that care with const-correctness is critical. The
design of the EDM allows access only to the const functions of items that have
been stored in the EventRecord . Since this is the model accepted by CDF (which
we support), it is important to assure that this policy is not subverted, either
by error or by design.

The signs in the code leading us to concern about const-correctness were
widespread use of const cast and widespread use of mutable data members.
Both of these are generally a sign of poor design or misunderstanding how to
use a design — either in the EDM or in the physics objects themselves.

These problems are concentrated especially in the tracking objects code.
We recommend the authors of the tracking objects meet with Robert
Kennedy, the author of the EDM classes, to discuss where the prob-
lems have arisen, and what can be done to remove them.

Group leaders should perform periodic reviews, to be sure no inappropriate
casting away of const-ness is being done.

9 Miscellanea

This section contains a selection of comments that did not seem to fit neatly
into one of the previous categories. This should not be taken to mean that we
think these are unimportant — they are just hard to classify.

9.1 Doubles vs. Floats

The built-in type double should be returned from accessor methods of the
objects to prevent round-off error and give the best results for intermediate
calculations. The actual value written out could be a float, to save space, or
a double, if the extra precision (or range) is required.

9.2 Calculation vs. Cached Values

Methods (in physics objects) that calculate values must be kept simple. If a
method does extensive calculations, it is likely to be more like an algorithm then
a simple transformation of existing information. The most significant problem
with algorithmic methods in the data objects is that the methods will need
to be versioned, in a fashion similar to the ROOT streamer model. Each of
the objects created will need to be tagged with a data object version so that
the proper part of the method can be invoked for older data. The algorithms
in complex methods are likely to be changed and can cause reproducibility
problems. We recommend that algorithm methods in physics objects
be forbidden.

18

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/EventRecord.hh

9.3 Convenience Methods

Class member functions which call through to functions in pointed-to (or linked-
to) contained objects should be avoided. That is, if ThingWithTrack contains
a Link<CdfTrack>, and if the momentum of ThingWithTrack is determined
by the contained CdfTrack , then ThingWithTrack should either cache the mo-
mentum of the associated track, and have a member function that returns that
momentum, or it should not have a member function to return the momentum.
It should not have a member function that call the member function momentum
of the CdfTrack it contains; it may have a member function that returns the
Link<CdfTrack> itself.

The reason for this prohibition is that having such functions forces a compile-
time dependency on the linked-to object. This makes the high-level object
tightly coupled to the linked-to object’s interface and ties it to the linked-to
object library. Beyond the physical coupling, it also adds a unnecessary main-
tenance burden to the author of the class which has this sort of function; each
time the interface of the pointed-to function is changed, the other class must be
modified to adapt to the new interface.

The Links should only cause a compile- or link-time coupling if they are
traversed by the user application code. Merely returning a link should not
cause any such coupling.

9.4 Efficiency and Correctness Issues

9.4.1 Steamers

Care should be given to reserving space in vectors when streaming in objects.
This can improve object conversion performance.

9.4.2 Copy constructors

In several places there are copy constructors written that just copy the private
members from one place to another. The default copy constructor (that will be
written for you by the compiler) does this, and may be more efficient than such
code. More important is the reduction of the maintenance burden: allowing the
compiler to generate the copy constructor means there is no chance of forgetting
to update the copy when a new member variable is added. Why write (and
maintain) code that you do not need to write?

9.4.3 Unnecessary Callthroughs

There are several methods that do nothing useful. An example is:

void CdfTrack::deallocate()
{
StorableObject::deallocate();

}

19

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh

Since CdfTrack publicly inherits from StorableObject , this call just wastes
time and creates an additional maintenance burden. If the function was not
there, the result would be that the base class’s deallocate would be called8.

9.5 RCS Identifiers

Care must be taken about using RCS identifiers as code version identifiers.
We have not searched through all the code to find out if they were or not.
Since algorithms are often split across several header and source files, the RCS
identifier of any individual file it not very meaningful. The CVS tags may be
more useful.

9.6 Magnetic Field

Although the issue of how the magnitude of the magnetic field is accessed is
not directly part of this review committee’s charge, we must comment on the
importance of having an implementation soon to stop the promulgation of hard
coding the value where needed.

9.7 EDM Issues

These section includes a few comments that are directed more toward the EDM
than toward the physics objects classes themselves.

9.7.1 Compressed Datasets

The discussion of the physics objects has brought up several scenarios that
make building compressed datasets difficult. It appears that the EDM is on its
way to addressing them, and the issues are understood. We mention the more
important issues here, so that they are not forgotten.

• It must be made easy to copy subsets of objects from collections, including
linked information into new instances and have that information written
out.

• It could be there is an option or collection type where only objects in the
collection are only written out if they are referenced by a link.

• Utilities must be made available either through the EDM or the physics
objects that make it convenient to work with these collections. See the
examples in §3.2.

8We also note that the deallocate method in StorableObject does nothing except print to
cerr. See §9.7.2 for comment.

20

http://purdue-cdf.fnal.gov/CdfCode/source/TrackingObjects/TrackingObjects/Tracks/CdfTrack.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/StorableObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/StorableObject.hh

9.7.2 Destroy and Deallocate

It is unclear to us how one should properly use destroy and deallocate, and
how they are related to the destructor of the class. The Edm/doc directory
should be populated with a user guide that explains how to use methods and
why they exists, and each of the StorableObject subclasses should be inspected
to assure that they are implementing (or using) these functions correctly. Many
of these classes merely call through to the base class’s function.

9.7.3 Typedefs

The various handle classes should contain a standard typedef (we suggest
element type, as used in auto ptr). This is to allow for generic programming
constructs to manipulate handles.

Each of the EDM collection classes (RefVector , ValueVector , etc.) should
contain a standard typedef (we suggest collection type) that describes the
kind of collection it holds. This is to allow for generic programming constructs
to manipulate collections.

21

http://purdue-cdf.fnal.gov/CdfCode/source/Edm/Edm/StorableObject.hh
http://purdue-cdf.fnal.gov/CdfCode/source/StorableContainers/StorableContainers/RefVector.hh
http://purdue-cdf.fnal.gov/CdfCode/source/StorableContainers/StorableContainers/ValueVector.hh

	Introduction
	Physics Objects
	Uniformity and Ease of Access
	Finding Objects in the EventRecord
	Objects within Collections
	View Classes
	Standard typedefs and methods
	Association Between Objects

	Documentation
	Documentation for Physics Objects
	Documentation for the EDM

	Comments on Each Object
	Tracks
	CdfTrackColl
	CdfTrack
	CT_HitSet
	CdfTrackView
	Pairs of Tracks
	Use of bi-directional links
	Excessive use of const_cast
	Inappropriate Inlining
	A Plethora of Collections
	Enumerations

	Jets
	Linkage to CalData
	Standard typedefs

	EMObjects
	Complex Calculations
	Other Comments

	Muons

	Links
	Data Caching vs. Use of Links
	Problems with Existing Use of Links

	Corrections
	const Correctness
	Miscellanea
	Doubles vs. Floats
	Calculation vs. Cached Values
	Convenience Methods
	Efficiency and Correctness Issues
	Steamers
	Copy constructors
	Unnecessary Callthroughs

	RCS Identifiers
	Magnetic Field
	EDM Issues
	Compressed Datasets
	Destroy and Deallocate
	Typedefs

